Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone.

نویسندگان

  • Emilia Vasanelli
  • Donato Colangiuli
  • Angela Calia
  • Maria Sileo
  • Maria Antonietta Aiello
چکیده

UPV as non-destructive technique can effectively contribute to the low invasive in situ analysis and diagnosis of masonry elements related to the conservation, rehabilitation and strengthening of the built heritage. The use of non-destructive and non-invasive techniques brings all the times many advantages in diagnostic activities on pre-existing buildings in terms of sustainability; moreover, it is a strong necessity with respect to the conservation constraints when dealing with the historical-architectural heritage. In this work laboratory experiments were carried out to investigate the effectiveness of ultrasonic pulse velocity (UPV) in evaluating physical and mechanical properties of Lecce stone, a soft and porous building limestone. UPV and selected physical-mechanical parameters such as density and uniaxial compressive strength (UCS) were determined. Factors such as anisotropy and water presence that induce variations on the ultrasonic velocity were also assessed. Correlations between the analysed parameters are presented and discussed. The presence of water greatly affected the values of the analysed parameters, leading to a decrease of UPV and to a strong reduction of the compressive strength. A discussion of the role of the water on these results is provided. Regression analysis showed a reliable linear correlation between UPV and compressive strength, which allows a reasonable estimation of the strength of Lecce stone by means of non-destructive testing methods such as the ultrasonic wave velocity. Low correlation between UPV and density was found, suggesting that other factors than density, related to the fabric and composition, also influence the response of the selected stone to the UPV. They have no influence on the UCS, that instead showed to be highly correlated with the packing density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of mechanical and durability properties of self-compacting concrete with fibers using ultrasonic pulse velocity

In this research, the performance of ultrasonic pulse velocity (UPV) in concrete is examined as a nondestructive experiment in order to estimate mechanical (compressive and tensile strength) and durability (water absorption) properties of fiber-reinforced self-compacted concrete For this purpose 11 mixture designs containing 3 types of fibers (steel: 0.1, 0.2, 0.3 and 0.4 percent by volume, Pol...

متن کامل

Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulu...

متن کامل

Measurement and Modelling of the Rubber Resilience based on Ultrasonic Non-destructive Testing in Tires

In tire industry, it is very crucial to evaluate physical and mechanical properties of the rubber which is used for production of the tire, to ensure the quality of the final product. Resilience is an important property of a rubber, which cannot be evaluated through direct measurement in production cycle in this industry. Therefore, non-destructive ultrasonic testing, which has been used in man...

متن کامل

Estimating the Mechanical Properties of Travertine Building Stones Due to Salt Crystallization Using Multivariate Regression Analysis

     Salt crystallization is one of the most powerful weathering agents that may cause a rapid change in the mechanical properties of stones, and thus limit their durability. Consequently, determining the mechanical properties of stones due to salt crystallization is important for natural building stones used in marine environmental and mild climatic conditions, which expose excessive salt crys...

متن کامل

Rock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis

The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasonics

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2015